Dissolution of the periclase (001) surface: A scanning force microscope study

نویسندگان

  • GUNTRAM JORDAN
  • STEVEN R. HIGGINS
  • CARRICK M. EGGLESTON
چکیده

In contrast to most ionic minerals studied by SFM, the periclase (001) surface dissolves not by retreat of monolayer steps parallel to (001), but by retreat of a rough surface perpendicular to (001). At pH , 2, dissolution has an additional contribution from retreating macro-steps at the edges of nearly square pits. The macro-steps have heights up to 120 nm. In general, step direction is parallel to [110] and equivalent directions. During dissolution at low pH, a soft near-surface region is formed. Other investigators have shown that the near-surface region is protonated. Protonation is supposed to stabilize the (111) surface of periclase. Due to the structural similarities between periclase (111) and brucite (001), and similar dissolution rates of periclase and brucite at pH , 5, we conclude that during dissolution the periclase (001) surface is restructured into ‘‘(111) nano-facets’’ representing brucite (001)-like layers and appearing as a rough and soft surface in SFM images. The most probable reasons that the slopes of these macro-steps (up to 508) are lower than the slopes of perfect (111) facets are the likely poorly ordered structure of these layers, microtopography on these surface facets, and tip-surface convolution in SFM. By measuring the vertical position of the surface vs. time, we calculated the dissolution rate. At pH 1 and pH 2 we found the rates to be 17.1 6 5.8 3 1026 and 5.7 6 3.7 3 1026 mol/m2·s, respectively. These rates are in reasonable agreement with previously reported rates of periclase and brucite (001) dissolution, and are consistent with the idea that the MgO (001) surface consists of Mg(OH)2 (001)-like layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

Application of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin

The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...

متن کامل

In-Situ Imaging of Ionic Crystal Dissolution Using an Integrated Electrochemical/AFM Probe

The kinetics and mechanism controlling dissolution from the (100) cleavage face of potassium bromide single crystals in acetonitrile solutions have been identified using a novel integrated electrochemical/AFM probe and a scanning electrochemical microscope (SECM). With both techniques, dissolution is induced by perturbing the dynamic dissolution/growth equilibrium at the crystal/solution interf...

متن کامل

Studying of various nanolithography methods by using Scanning Probe Microscope

The Scanning Probe Microscopes (SPMs) based lithographic techniques have been demonstrated as an extremely capable patterning tool. Manipulating surfaces, creating atomic assembly, fabricating chemical patterns, imaging topography and characterizing various mechanical properties of materials in nanometer regime are enabled by this technique. In this paper, a qualified overview of diverse lithog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998